LOS TEOREMAS DE GÖDEL (1931)
Desarrollados por Kurt Gödel (1906-1978) en 1931 (en su tesis doctoral). Son dos los llamados teoremas de la incompletud.
El primero afirma que en un sistema aritmético completo (capaz de responder a todas las preguntas), aunque los axiomas que lo fundamentan no sean contradictorios, habrá enunciados que no puedan probarse ni refutarse a partir de ellos (indecidibilidad).
El segundo dice que la consistencia del sistema aritmético en cuestión depende de una de esas sentencias indecidibles.
En conclusión: nunca se podrá encontrar un sistema axiomático que sea capaz de demostrar todas las verdades matemáticas y ninguna falsedad.
Einstein y Gödel |
Comentarios
Publicar un comentario
Deja un comentario, a ser posible relacionado con la entrada. Gracias.